三角函数的极限和导数
微积分学习笔记 - 02 三角函数的极限和导数
进入 传送门,阅读刊载在专栏《微积分阅读笔记》下的全部文章。
三、三角函数的极限
本节简短记录几个比较重要的三角函数极限,对后文推出三角函数的导数有重要作用。
3.1 正弦函数的极限
首先考虑一个重要极限 \[ \lim\limits_{x\to 0}\dfrac{\sin(x)}{x} \] 这个极限的求解将借助单位圆完成。
三角形 OAC、扇形 OAB、三角形 ODB 的面积分别等于 \(\dfrac{\sin(x)}{2}\),\(\dfrac x 2\),\(\dfrac{\tan(x)} 2\),有不等关系 \[ \sin(x)<x<\tan(x) \] 对于 \(x>0\) 的情况进一步转化可得 \[ \cos(x)<\dfrac{\sin(x)}x<1 \] 使用三明治定理,在 \(x=0\) 的位置,\(\cos(x)=1\),所以得到右极限 \[ \lim\limits_{x\to 0^+}\dfrac{\sin(x)}{x}=1 \] 由于上述函数是奇函数,不难得到双侧极限 \[ \boxed{\lim\limits_{x\to 0}\dfrac{\sin(x)}{x}=1} \] 求解正弦函数的极限,通常利用正弦函数的值域特征 \(-1\le \sin(x)\le 1\) 简化问题。
3.2 余弦函数的极限
显然,我们有极限 \[ \lim \limits_{x\to 0}\cos(x)=1 \] 接下来考虑极限 \[ \lim \limits_{x\to 0}\dfrac{1-\cos(x)}{x} \] 尝试让分子出现 \(1-\cos^2(x)\),从而出现 \(\sin^2(x)\),借助正弦函数极限求解。 \[ \begin{aligned} \lim \limits_{x\to 0}\dfrac{1-\cos(x)}{x}&=\lim\limits_{x\to 0}\dfrac{1-\cos(x)}{x}\times \dfrac{1+\cos(x)}{1+\cos(x)} \\ &=\lim \limits_{x\to 0}\dfrac{1-\cos^2(x)}{x(1+\cos(x))}\\ &=\lim \limits_{x\to 0}\dfrac{\sin^2(x)}{x}\times \dfrac{1}{1+\cos(x)}\\ &=\lim \limits_{x\to 0}\sin(x)\times \dfrac{\sin(x)}{x}\times \dfrac{1}{1+\cos(x)}\\ &=0\times 1\times \dfrac{1}{1+1}\\ &=0 \end{aligned} \] 所以得到重要结论 \[ \boxed{\lim \limits_{x\to 0}\dfrac{1-\cos(x)}{x}=0} \] 考虑另一个极限 \[ \lim \limits_{x\to 0}\dfrac{1-\cos(x)}{x^2} \] 借助上面的思路,不难得到 \[ \begin{aligned} \lim \limits_{x\to 0}\dfrac{1-\cos(x)}{x^2}&=\lim \limits_{x\to 0}\dfrac{1-\cos(x)}{x^2}\times \dfrac{1+\cos(x)}{1+\cos(x)}\\ &=\lim \limits_{x\to 0}\dfrac{1-\cos^2(x)}{x^2}\times \dfrac{1}{1+cos(x)}\\ &=\lim \limits_{x\to 0}(\dfrac{\sin(x)}{x})^2\times \dfrac{1}{1+\cos(x)}\\ &=1^2\times \dfrac{1}{1+1}\\ &=\dfrac12 \end{aligned} \]
3.3 正切函数的极限
考虑极限 \[ \lim \limits_{x\to 0}\dfrac{\tan(x)}{x} \] 作变换 \(\tan(x)=\dfrac{\sin(x)}{\cos(x)}\) 可得 \[ \begin{aligned} \lim \limits_{x\to 0}\dfrac{\tan(x)}{x}&=\lim \limits_{x\to 0}\dfrac{\dfrac{\sin(x)}{\cos(x)}}{x}\\ &=\lim \limits_{x\to 0}\dfrac{sin(x)}{x}\times \dfrac1{cos(x)}\\ &=1\times \dfrac11\\ &=1 \end{aligned} \] 这也就证明了 \[ \boxed{\lim \limits_{x\to 0}\dfrac{\tan(x)}{x}=1} \]
四、三角函数的导数
借助第三节的推论,可以推出六种三角函数的导数。本节将对它们分别推出与证明。
下面是六种三角函数的导数对照表: \[ \begin{array}{|c|c|} f(x)=&f'(x)=\\ \sin(x)&\cos(x)\\ \cos(x)&-\sin(x)\\ \tan(x)&\sec^2(x)\\ \cot(x)&-\csc^2(x)\\ \sec(x)&\sec(x)\tan(x)\\ \csc(x)&-\csc(x)\cot(x) \end{array} \]
4.1 正弦函数的导数
借助第三节中的两个极限 \[ \lim \limits_{h\to 0}\dfrac{\sin(h)}{h}=1\quad,\quad \lim \limits_{h\to 0}\dfrac{1-\cos(h)}{h}=0 \] 直接使用导数定义与和角公式,令 \(f(x)=\sin(x)\),推出: \[ \begin{aligned} f'(x)&=\lim \limits_{h\to 0}\dfrac{f(x+h)-f(x)}{h}=\lim \limits_{h\to 0}\dfrac{\sin(x+h)-\sin(h)}{h}\\ &=\lim \limits_{h\to 0}\dfrac{\sin(x)\cos(h)+\cos(x)\sin(h)-\sin(x)}h\\ &=\lim \limits_{h\to 0}\dfrac{\sin(x)(\cos(h)-1)+\cos(x)\sin(h)}h\\ &=\lim \limits_{h\to 0}(\sin(x)\times \dfrac{\cos(h)-1}h+\cos(x)\times \dfrac{\sin(h)}h)\\ &=\sin(x)\times 0+\cos(x)\times 1\\ &=\cos(x) \end{aligned} \] 得出其导数为 \[ \boxed{\dfrac{\mathrm{d}}{\mathrm{d}x}\sin(x)=\cos(x)} \]
4.2 余弦函数的导数
令 \(f(x)=\cos(x)\),借助和角公式可得得到: \[ \begin{aligned} f'(x)&=\lim \limits_{h\to 0}\dfrac{f(x+h)-f(x)}h=\lim \limits_{h\to 0}\dfrac{\cos(x+h)-\cos(x)}h\\ &=\lim \limits_{h\to 0}\dfrac{\cos(x)\cos(h)-\sin(x)\sin(h)-\cos(x)}h\\ &=\lim \limits_{h\to 0}\cos(x)\times \dfrac{\cos(h)-1}h-\sin(x)\times \dfrac{\sin(h)}h\\ &=\cos(x)\times 0-\sin(x)\times 1\\ &=-\sin(x) \end{aligned} \] 得出其导数为 \[ \boxed{\dfrac{\mathrm{d}}{\mathrm{d}x}\cos(x)=-\sin(x)} \]
4.3 正切函数的导数
令 \(y=\tan(x)=\dfrac{\sin(x)}{\cos(x)}\),再令 \(u=\sin(x),v=\cos(x)\),使用商法则得到: \[ \begin{aligned} \dfrac{\mathrm{d}y}{\mathrm{d}x}&=\dfrac{v\dfrac{\mathrm{d}u}{\mathrm{d}x}-u\dfrac{\mathrm{d}v}{\mathrm{d}x}}{v^2}=\dfrac{\cos(x)\cos(x)-\sin(x)(-\sin(x))}{\cos^2(x)}\\ &=\dfrac{1}{\cos^2(x)}\\ &=\sec^2(x) \end{aligned} \] 得出其导数为 \[ \boxed{\dfrac{\mathrm{d}}{\mathrm{d}x}\tan(x)=\sec^2(x)} \]
4.4 余切函数的导数
令 \(y=\cot(x)=\dfrac{\cos(x)}{\sin(x)}\),再令 \(u=\cos(x),v=\sin(x)\),使用商法则得到: \[ \begin{aligned} \dfrac{\mathrm{d}y}{\mathrm{d}x}&=\dfrac{v\dfrac{\mathrm{d}u}{\mathrm{d}x}-u\dfrac{\mathrm{d}v}{\mathrm{d}x}}{v^2}=\dfrac{\sin(x)(-\sin(x))-\cos(x)\cos(x)}{\sin^2(x)}\\ &=\dfrac{-1}{\sin^2(x)}\\ &=-\csc^2(x) \end{aligned} \] 得到其导数为 \[ \boxed{\dfrac{\mathrm{d}}{\mathrm{d}x}\cot(x)=\csc^2(x)} \]
4.5 正割函数的导数
令 \(y=\sec(x)=\dfrac1{\cos(x)}\),再令 \(u=\cos(x)\),则 \(y=\dfrac1{u}\),使用链式求导法则得到: \[ \begin{aligned} \dfrac{\mathrm{d}y}{\mathrm{d}x}&=\dfrac{\mathrm{d}y}{\mathrm{d}u}\dfrac{\mathrm{d}u}{\mathrm{d}x}=-\dfrac1{\cos^2(x)}(-\sin(x))\\ &=\dfrac1{\cos(x)}\times\dfrac{\sin(x)}{\cos(x)}\\ &=\sec(x)\tan(x) \end{aligned} \] 得出其导数为 \[ \boxed{\dfrac{\mathrm{d}}{\mathrm{d}x}\sec(x)=\sec(x)\tan(x)} \]
4.6 余割函数的导数
令 \(y=\csc(x)=\dfrac1{\sin(x)}\),再令 \(u=\sin(x)\),则 \(y=\dfrac1{u}\),使用链式求导法则得到: \[ \begin{aligned} \dfrac{\mathrm{d}y}{\mathrm{d}x}&=\dfrac{\mathrm{d}y}{\mathrm{d}u}\dfrac{\mathrm{d}u}{\mathrm{d}x}=-\dfrac1{\sin^2(x)}\cos(x)\\ &=-\dfrac1{\sin(x)}\times\dfrac{\cos(x)}{\sin(x)}\\ &=-\csc(x)\cot(x) \end{aligned} \] 得出其导数为 \[ \boxed{\dfrac{\mathrm{d}}{\mathrm{d}x}\csc(x)=-\csc(x)\cot(x)} \]